ShardingSphere是Apache顶级开源项目,提供了一套完整的分库分表解决方案。下面详细介绍如何使用ShardingSphere实现分库分表并处理历史数据。
一、ShardingSphere分库分表基础配置
1. 添加依赖
<!-- Spring Boot Starter -->
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>5.3.2</version>
</dependency>
2. 基础配置示例(application.yml)
spring:
shardingsphere:
datasource:
names: ds0,ds1
ds0:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/db0
username: root
password: root
ds1:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/db1
username: root
password: root
rules:
sharding:
tables:
t_order:
actual-data-nodes: ds$->{0..1}.t_order_$->{0..15}
table-strategy:
standard:
sharding-column: order_id
precise-algorithm-class-name: com.example.MyPreciseShardingAlgorithm
key-generate-strategy:
column: order_id
key-generator-name: snowflake
key-generators:
snowflake:
type: SNOWFLAKE
props:
worker-id: 123
3. 自定义分片算法
public class MyPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
// 根据order_id计算分表后缀
long orderId = shardingValue.getValue();
String tableSuffix = String.valueOf(orderId % 16);
for (String each : availableTargetNames) {
if (each.endsWith(tableSuffix)) {
return each;
}
}
throw new UnsupportedOperationException();
}
}
二、历史数据处理方案
1. 使用ShardingSphere-Scaling进行数据迁移
ShardingSphere提供了Scaling模块专门用于数据迁移:
# scaling配置示例
scaling:
name: defaultScaling
workerThread: 40
batchSize: 1000
rateLimiter:
type: QPS
props:
qps: 50
迁移流程:
创建迁移任务
执行全量数据迁移
执行增量数据同步
切换业务流量
2. 迁移代码示例
@RestController
@RequestMapping("/scaling")
public class ScalingController {
@Autowired
private ScalingAPI scalingAPI;
@PostMapping("/start")
public String startMigration() {
JobConfiguration jobConfig = new JobConfiguration();
jobConfig.setJobId("migration-job-1");
jobConfig.setSourceResourceName("ds_old");
jobConfig.setSourceSchemaName("db_old");
jobConfig.setTargetResourceName("ds_new");
jobConfig.setTargetSchemaName("db_new");
// 配置表映射规则
jobConfig.getJobShardingDataNodes().add(
new JobShardingDataNode("t_order", "ds0.t_order_0,ds0.t_order_1,...")
);
scalingAPI.start(jobConfig);
return "Migration started";
}
@GetMapping("/progress/{jobId}")
public JobProgress getProgress(@PathVariable String jobId) {
return scalingAPI.getProgress(jobId);
}
}
3. 双写过渡方案
在迁移期间,可以使用ShardingSphere的HintManager实现强制路由,确保新旧数据一致:
@Service
public class OrderService {
@Autowired
private OrderRepository orderRepository;
@Transactional
public void createOrder(Order order) {
// 写入新分片表
orderRepository.save(order);
// 使用HintManager强制写入旧表
try (HintManager hintManager = HintManager.getInstance()) {
hintManager.setDatabaseShardingValue("ds_old");
orderRepository.save(order);
}
}
}
4. 历史数据归档策略
# 配置归档规则
spring:
shardingsphere:
rules:
sharding:
tables:
t_order:
actual-data-nodes: ds$->{0..1}.t_order_$->{0..15}
auto-table:
t_order_archive:
actual-data-sources: ds_archive
sharding-strategy:
none:
三、查询历史数据方案
1. 使用ShardingSphere的绑定表
spring:
shardingsphere:
rules:
sharding:
binding-tables:
- t_order,t_order_archive
2. 联邦查询配置
-- 创建逻辑视图
CREATE SHARDING VIEW order_view AS
SELECT * FROM t_order
UNION ALL
SELECT * FROM t_order_archive;
3. 多数据源查询
@Repository
public class OrderDao {
@Autowired
@Qualifier("newDataSource")
private DataSource newDataSource;
@Autowired
@Qualifier("oldDataSource")
private DataSource oldDataSource;
public List<Order> findHistoricalOrders(Long userId) {
// 查询新分片表
List<Order> newOrders = queryFromDataSource(newDataSource, userId);
// 查询旧单表
List<Order> oldOrders = queryFromDataSource(oldDataSource, userId);
// 合并结果
List<Order> allOrders = new ArrayList<>();
allOrders.addAll(newOrders);
allOrders.addAll(oldOrders);
return allOrders;
}
}
四、最佳实践建议
迁移前准备:
评估数据量和业务影响
准备完善的回滚方案
在测试环境充分验证
迁移期间:
选择业务低峰期执行
监控迁移进度和系统性能
保持新旧系统双写一段时间
迁移后:
验证数据一致性
性能基准测试
逐步淘汰旧系统
长期维护:
建立定期归档机制
监控分片均衡性
准备扩容方案
通过ShardingSphere的这些功能,您可以相对平滑地实现分库分表改造,并妥善处理历史数据问题。
评论区